
INTRODUCTIO
A discussion on Talking Electronics latest monitor

for the TEC computer
Article and monitor by

JMON is a big step ahead for the TEC. 	Jim Robertson

Some of the contents of JMON are: a
highly improved Monitor Program, a
versatile Tape Storage Program,
software for driving a liquid crystal dis-
play, a Menu Driver for utilities, a
Perimeter Handler, User Reset Patch,
Single Stepper and Break Pointer with
registerdisplay software, and simplified
access to utilities and user routines.

JMON also uses indirect look-up
tables stored in RAM. This idea leaves
the door open for many possibilities.

All the above and more is contained in
2k bytes.

The following is a description of the
major blocks in the ROM.

THE MONITOR PROGRAM
To support new features added to the

TEC, a new interactive monitor
program has been written. The new
monitor is, by itself, a considerable
upgrade over previous monitors and
when combined with other software in
the monitor ROM, gives great features
for the TEC user.

Major improvements have been made
in the MONitor software, to allow
quicker entry and editing of code. This
has been achieved by adding such fea-
tures as auto key repeat and auto incre-
ment. If you add the LCD, its larger dis-
play and cursor control software open
up a second level of improvement.

THE TAPE SOFTWARE
The TAPE SAVE facility is versatile

and reliable.
Some of the functions include: 300

and 600 baud tape SAVE, auto execu-
tion, LOAD selected file, LOAD next
file, LOAD at optional address, TEST
tape to memory block and TEST tape
check sum. Both tests may be combined
with other options.

The tape software uses the universal
MENU driver and perimeter handler.
These routines allow easy selection of
cassette functions (e.g. Load, Save, etc.)
and easy passing of variables to the tape
software.

The tape software contains check-sum
error detection that allows the user to
know if the load has failed. A check-
sum compare is performed after every
page (256 bytes) and also after the
leader is loaded. This means the user
does not need to wait until the end of a
load or test for error detection.

Each full page to be loaded, testednr
saved, is displayed on the TEC LED
display. Up to 16 pages are displayed.

Upon completion of a tape operation,
the MENU is re-entered with an ap-
propriate display showing:-END -S
(END SAVE); PASS CS (CHECK
SUM); PASS Tb (TEST BLOCK);
PASS Ld (LOAD); FAIL CS (CHECK
SUM); FAIL Tb (TEST BLOCK);
FAIL Ld (LOAD).

The one exception is when an auto ex-
ecute is performed after a successful
load.

The tape software will display each
file as it is found and also echo the tape
signal.

LIQUID CRYSTAL
SOFTWARE

This software is called from the
monitor program. It is possible to de-
select this software to allow the liquid
crystal display to perform a user-
defined purpose while the monitor is
being used.

The Liquid Crystal Display is being
accessed as a primary output device to
the user during the execution of the
monitor. Eight data bytes are displayed
at a time and a space between each for
the prompt (it appears as a "greater
than" sign). Four digits in the top left
hand corner show the address of the first
byte.

In the bottom left hand corner is a cur-
rent mode indicator and this lets you
know which particular mode JMON is
in. E.g. Data mode, Address mode etc.

The prompt points to the next location
to have data entered, or if at the end of
the 8 bytes being displayed, the prompt
parks at the top left corner indicating a
screen change will occur on the next

data key press. This allows revision
before proceeding.

It is possible to use the monitor with
only the LCD unit, the only drawback
being the actual current value of the ad-
dress pointer is not displayed (the value
shown in the address portion of the LED
display). However this is only minor.

MENU DRIVER
This is a universal routine used to

select various utilities routine from
JMON. It is already used by the tape
software and the utilities ROM. It may
also be easily used by the TEC user.

The Menu Driver displays names of
functions in the TEC LED display. The
number of different names is variable
and may be user defined. It is possible
to step forward and backward through
these names.

A 3-byte jump table with an entry for
each name provides the address of the
required routine. A jump is performed
upon "GO."

To have a look, call up the cassette
software by pressing SHIFT and ZERO
together. If you have not fitted a shift
key, the cassette software can be ad-
dressed by pressing the address key,
then the plus key, then zero.

To move forward through the MENU,
press "+". To move backward, press
"-". Notice the automatic FIRST-TO-
LAST, LAST-TO-FIRST wrap around.

Pressing "GO" will take you into the
perimeter handler.

PERIMETER HANDLER
Like the Menu Driver, this is a univer-

sal program and may be easily used by
the user.

This routine allows variables to be
passed to routines in an easy manner.
The variables are typically the start and
end address of a block of memory that
is to be operated on, such as a load, shift,
copy, etc.

A 2-character name for each 2-byte
variable is displayed in the data display
while the actual variable is entered and
displayed in the address display.

The number of variables may be from
1 to 255 and is user definable.

The data display is also user definable.

It is possible to step forwards and back
through the perimeter handler in the
same fashion as the MENU driver.

When a "GO" command is received,
control is passed to the required routine

18 TALKING ELECTRONICS No. I;

TALKING ELEFefacS cOtNv

via a 2-byte address stored at 0888 by
the calling routine.

The SINGLE STEPPER and
BREAK POINT handler.

A single stepper program can be im-
portant when de-bugging a program. It
effectively "runs" the program one step
at a time and lets you know the contents
of various registers at any point in the
program.

If you have ever produced a program
that doesn't "run", you will appreciate
the importance of a single stepper.
Many times, the program doesn't nm
because of an incorrect jump value or an
instruction not behaving as the
programmer thinks

The single stepper runs through the
program one instruction at a time and
you can halt it when ever you wish. By
looking at the contents of the registers,
you can work out exactly what is hap-
pening at each stage of the program.

The single stepper operates by access-
ing a flip flop connected to the Mask-
able Interrupt line of the Z-80. It can be
operated in the manual mode, in which
a single instruction is executed after
each press of the "GO" key. In the auto
mode, 2 instructions are executed per
second.

BREAK POINTS
Break points work with groups of in-

structions. They allow register ex-
amination in the same way as a single
stepper. The advantage of break points
is that there is no time wasted stepping
slowly through a program. This is par-
ticularly important as some programs
contain delay loops and they may take
weeks to execute at 2Hz!

Break points are one of the most effec-
tive ways to debug a program!

STARTING WITH JMON
JMON is straight forward to use. Some

new habits must be learnt, however they
are all quite easy.

JMON has 4 modes of operation. They
are:

DATA MODE, ADDRESS MODE,
SHIFT MODE and FUNCTION
MODE.

The data address and shift modes are
not new but have been, in pan, changed
in their operation. The function mode is
new to the TEC and I am sure you will
find it useful. Below is a description of
each mode.

THE DATA MODE
The data mode is used to enter, ex-

amine and edit, hex code into RAM
memory. It is identified by one or two
dots in the data display and the word
'DATA" in the bottom left hand corner
of the LCD display. It is similar to the
data mode on all previous MONitors.

The data mode has a sub-mode called
AUTO INCREMENT. This is a default
setting, meaning that it is set to auto in-
crement on reset. The user may turn off
the auto increment sub-mode if desired.

When in the auto increment mode, the
current address pointer in the address
display is automatically pre-incre-
mented on each third data key press.

A SINGLE DOT in the RIGHT-
MOST LED display indicates the cur-
rent address will be incremented
BEFORE the next nibble received from
the keyboard is stored.

This allows the user to review the byte
just entered. If an incorrect nibble is
entered, the internal nibble counter
MUST BE RESET by pressing the AD-
DRESS KEY TWICE. Then two nib-
bles may be entered at that location.
This is a slight annoyance at first, but it
is a small price to pay for such a power-
ful feature as auto increment!

After two nibbles have been entered,
the prompt on the LCD is IM-
MEDIATELY updated and points to the
next memory location, or in the case of
the last byte on the LCD, the prompt
PARKS AT THE TOP LEFT CORNER
signifying an entire screen update
UPON THE NEXT DATA KEY
PRESS.

This allows the user to revise the
entered code before continuing.

You must be in the data mode to per-
form a program execution with the
"GO" key. (Actually, you can be in the
SHIFT mode also.)

Because of the auto key repeat, and
"auto increment", it is possible to fill
memory locations with a value by hold-
ing down a data key. This may be use-
ful to fill short spaces with FF's or
zero's.

Because the LCD prompt is advanced
immediately after the second nibble
being entered while the LED display is
advanced on the third nibble received,
the "+" key will advance only the LED
display while the "-" key will shift the
LCD prompt back two spaces, if either
are pressed immediately after the
second nibble is entered. This may seem

strange but is the result of a clever
design which allows for revision of
entered code on either display before
proceeding.

ADDRESS MODE
This is identified by 4 dots appearing

in the address display of the LED dis-
play and "ADDR" in the LCD bottom
corner.

The address key is used to toggle in
and out of this mode.

TEC INVADERS
AND MAZE

These two games come on a 10
minute tape with instructions and a
detailed diagram of the "invaders"
screen showing the various charac-
ters.

The instructions are basic but suf-
ficient. One VERY IMPORTANT
omission is the 8x8 is connected to
PORTS 5 and 6 for both games.

Both games are very entertaining
but invaders suffers a little by the
limitations of the 8x8.

However it does impose a chal-
lenge and you can constantly improve
on your score.

Maze dose not suffer one bit by the
limits of the 8x8. In fact the 8x8 is
perfect for the Maze. The scrolling
effect has to be seen to be appreciated.

Maze is a game to keep you oc-
cupied for hours.

See Camerons tape #1 on P. 39.

TALKING ELECTRONICS No. 15 19

The address mode will be entered by
an address key press from either the data
or function mode. An address key
pressed while in the address mode will
result in a return to the data mode.

While in the address mode, data keys
are used to enter an address while the
control keys (+, -, GO) are used to enter
the function mode. No auto zeroing has
been included, therefore 4 keystrokes
are required to enter any address.

SHIFT MODE
This mode allows easy manual use of

the cursor. The shift works by holding
down the shift key and at the same time,
pressing a data key.

The monitor must be in the data mode
and only data keys work with the shift.

Sixteen functions are available but
only ten have been used in this monitor.

The shifts are:
Shift-zero: Cassette MENU is dis-

played-
Shift-one: Cursor back one byte.
Shift-two: Stan single stepper at cur-

tent address.
Shift-four: Cursor forward 4 bytes.
Shift-five: Break from shift lock (see

function made).
Shift-six: Cursor back 4 bytes.
Shift-seven: Enter register examina-

tion routine.
Shift-eight: Cursor forward 8 bytes.
Shift-nine: Cursor forward 1 byte.
Shift-A: Cursor back 8 bytes.

Note that 1,4, 6 and 9 forma cross and
8 and A form an arrow and each is posi-
tioned to correspond to their cursor
movement.

Keys 1 4, 6 and 9 move the cursor
LEFT, RIGHT, UP AND down on the
LCD.

Kay "A" shifts the screen back to
display the previous eight bytes.

Key it shifts the screen forward
eight bytes.

When editing a program, the shift
enables fast movement through the
memory. Data entry is achieved by
releasing the shift key.

The shift mode is not identified ex-
plicitly on either display.

THE FUNCTION MODE
This has been provided to enable a

quick way to call commonly used
routines. Only three keystrokes am re-
quired invoke up to 48 different
routines.

The function mode is broken up into 3
sections.

They are: Function select-I, Function
select-2 and Function select-3.

Each is identified by a single dot in the
address display: right-most forhinction
1, second right for function 2 and third
right for function 3. On the LCD dis-
play, the functions are identified by: Fs
- 1, Fs - 2, or Fs - 3 in the bottom left
corner.

Fs -1, Fs-2 and Fs-3 tue entered FROM
THE ADDRESS MODE by pressing
the "+" key for Ps-1, the "-" key for Fs-
2, the "GO" key for Fs-3.

It is possible to swap between sections
without coining out of the aurae func-
tion mode by pressing the required func-
tion select key. After entering the re-
quiredsection, A DATA KEY ISTHEN
USED TO SELECT ONE OF SIX-
TEEN ROUTINES.

The address of these routines are
stored in a look-up table.

SECTION-I - the SHIFT-LOCK
FEATURE.

Section-I is selected FROM THE AD-
DRESS MODE by pushing the "+" key.
The keys 0, 1, 2, 4, 5, 6, 7, 8, 9 and A
then have the functions as listed in the
shift mode. (Key 5 has the function of
returning to the data mode.)

Cursor control routines return back to
section-1 to enable continuous cursor
movement (shift-lock).

The look-up table for the jump addres-
ses for section- I is at 07E0.

SECTION-2
Section-2 is selected front the address

mode by pushing the "-" key. This is un-
used by any existing software and is
available to the user.

HERE'S HOW TO USE IT:
Using the section-2 is very easy. All

that is required is to enter the ad-
dress(es) of the !Nuked routines in a
table. The table begins at 0800. The first
two bytes at 08C0 correspond to the

zero key in section 2. While the second
two (08C2) correspond to key one etc.

Here is a short program as an example:
0800: 00 09 04 09 08 09
(These are the addresses of the

routines).

0900: 3E EB 18 06 3E 28 18 02
0908: 3E CD D3 02 3E 01 D3 01
0910: 76 C9
Now push ADdress, "- "0" and the

routine at 0900 will be CALLED from
the MONitor. Reset the TEC and try

Because these routines are CALLED
from the MONitor, you may use a return
(RET, C9 or RET NZ etc.) instruction
to re-enter the MONitor in the same
state as you left it. e.g. in the function
select-2 mode.

SECTION-3
This has been reserved for the utilities

ROM at 3800. The table for Section-3 is
at 3820.

USING THE
SINGLE

STEPPER
Getting the single stepper to work is

simple enough, however there is some
skill required to understand its limita-
tions and knowing how to avoid them.

To start with, you need a program that
you require to be SINGLE STEPPED,

This program may be anywhere in
memory except in the lowest 2k (dr
MON ROM).

This is because the MON select line is
used as part of the timing. You may call
into the MON ROM but only the first in-
struction will single i,tep. and when
returning out of the RUM, the next in-
struction will also not be stepped.
(However they will he executed at nor-
mal speed.)

Programs that use the TECs keyboard
require careful attention as you cannot
step them in the nomial way. This is be-
cause there is no way to distinguishing
between key-presses for the single step-
per and those for the subject program.

This reduces the usefulness of the
single stepper a little however thought-
ful software design enables a fair degree
of flexibility and this problem may be
side-stepped.

20 TALKING ILECTROMCS No. 15

The key use of the single stepper is as
a de-bugging aid. When you are writing
programs. effective use of the single
stepper usually requires that while writ-
ing yourprograms, you allow forthe use
of the single stepper by leaving room to
place one byte instructions that turn ON
and OFF the single stepper.

Programs using the keyboard may be
stepped by turning OFF the stepper.
This allows areas requiring use of the
keyboard to run in real time while other
areas may be single stepped. This ap-
plies only to programs that use the
keyboard roufines provided inside
!MON.

The- only disadvantages here is that
after completing yourprogram you may
have NOPs left.(from where you
blanked over the single stepper control
bytes).
The keyboard controls for the single

stepper are as follows:
To start single stepping from the Mir-

rent address, this is what to do: From the
data mode, press shift-2. This will start
the single stepper. The first instruction
will be performed and the address will
he displayed as "PC" (Program
Courtier) on the single stepper. To ex-
amine the registers, press "+". The left
two nibblescorrespond to the high order
byte add in the case of register pairs, the
Jett-hard register. You may go back-
wards also by pressing "- ". The
register.: displayed are : PC, AF, BC,
DE. HL. IX, IY, AF', BC', DE', HL'
and SP, in this order.

To ?rep the next instruction. press GO.
You can also step continuously at about
2111 by pitssing any data key.

Wlem in the auto step mode. you can
stop d any time and examine the
register: by pressing "+" or "-", or bring
it back to the manual mode by pressing
GO.
The address key resets back to the

MONttor unconditionally. The control
bytes for the single stepper are as fol-
lows:

To stop single stepping in a program:
P3 (disable interrupt).

To restart in a program: EF (restart
28). This causes a restart to 0028 where
a routine passes the start address (which
is actually the return address of the res-
tart 28 instruction) to the single stepper.
It also enables the interrupts and then
returns to the next instruction which is
then single stepped.

This SINGLE STEPPER is only a first
model. Hopefully, when more room is

available, some improvements can be
added. One improvement on the
"cards," is allowing it to be interfaced
with a utilities ROM. This ROM will
extend the display capabilities, allow
editing while stepping and to disas-
semble on the LCD each instruction as
it is stepped. If you have any ideas or re-
quirements, write in and tell us.

BREAK POINTS
Break points are locations in a

program where execution is stopped
and the registers are examined in the
same fashion as the single stepper. The
advantages over single stepping include
real time execution and less or no con-
trol bytes in a program. They also usual-
ly allow much quicker fault finding.

As a trade-off move, only a simple (but
effective!) form of break-point is avail-
able with JMON. This allows for more
MONitor functions and also eliminates
the need for extra hardware.

More complex methods automatically
remove the break-point control byte and
re-insert the correct op-code and allows
re-entry to the program.

USING JMON BREAK-
POINTS

Break points are achieved by using a
restart 38 instruction. The op-code for
this is FF and all that is required is for it
to be placed where ever you require
your break point.

Before running your program, make
sure the TEC is reset to 0900. This is
necessary to clear the auto-repeat on the
stepper/break-point register display.
(Ttus is explained in the LCD section).

Simply run your program as normal.
When the break point is reached, the
register display routine is entered. The
value of the program counter display
WILL NOT BE VALID on the first oc-
curring break unless you provided the
address of the break point at 0858. This
minor flaw was unavoidable without
considerable additional software which
would have "eaten" memory like there's
no tomorrow!

If you allowed for break commands in
your program, you may then have mul-
tiple breaks and step to the next break
with the GO key.

However if you placed a break com-
mand over an existing instruction then
no further breaks will be valid and you
should never try multiple breaks in this
case AS YOU MAY CRASH THE
MEMORY.

In the above case, make a note of the
contents of the registers and return to the
monitor via the address key and then ex-
amine memory locations, if required.
(You may enter the register examim-
tion routine via shift-7). Further breaks
should be done by removing the exist-
ing break and placing it where required
and re-executing the program from the
start.

Some other good ideas are to load the
stack away from the MONitor's RAM
area. (08F0 is good but make certain
that 08FF does not contain AA - as this
prevents the MONitor rebooting its
variables on reset and your stack may
have accidentally crashed these vari-
ables.) Also, if you are using the LED
display scan routine in the MONitor
ROM, shift your display buffer to 08F0
by putting this address into 082C/2D.
Now you can examine your stack and
display values after returning to the
MONitor.

There is a conditional way to cause
breaks. To do this requires a condition-
al jump relative with FF as the displace-
ment. If the condition is met, the jump
is made and jumps back onto the dis-
placement which then becomes the next
op-code! Remember this as it is a very
useful idea. You cannot continue on
with multiple breaks after a break
caused by this method.

Break points are a quick way to debug
a program. It is very important that you
familiarize yourself with them. They
have been the single mast important
programming aid used when writing
most of JMON and the utilities ROM.

SUMMARY:
Clear the auto-repeat via the reset.

: Use FF to cause a break
: PC not valid on first break.

: For multiple breaks, provide
spaces for the break control byte.

: Shift stack and display buffer
(optional)

: Use FF as displacement for con-
ditional breaks.

Finally, make sure you write down
when, where and why, each time you in-
sert a break-point.

ACKNOWLEDGMENT
Thanks to MR. C PISTRIN of Trani-

gon VIC. His SINGLE STEPPER
program for the MON- la inspired me
to include one in JMON and provided
me with a circuit for the hardware sec-
tion. 	See page 47 for the circuit

TALKING ELECTRONICS Ns IS 21

	Page 1
	Page 2
	Page 3
	Page 4

