
JMON
PROGRAMMER'S

UTILITIES

JMON PROGRAMMER'S UTILITIES
Below is a description of the use of all the JMON utilities

routines. Before you can understand the operation of the
utilities, I must explain the SOFTWARE STACK. The
SOFTWARE STACK, as its name suggests, is a stack created
by software. Its purpose is to store the address that JMON is
currently viewing. Addresses may also be recovered from the
SOFTWARE STACK on a last-on-first-off bases (just like the
real stack). The utilities ROM contains numerous routines that
make it possible for the programmer to manually follow
through a program the same way the Z80 does. For example: If
you are following through a program and you encounter a call
you can go to the new address and view the sub-routine. When
you encounter the RET instruction you can come back to where
you called from. 	 •

Up to 16 addresses can be stored on the SOFTWARE STACK
thus giving you 16 levels of nested calls. This will be enough
for most requirements.

The SOFTWARE STACK has been located at OFFF and
works down to OFEO. This is because JMON has used most of
the first RAM page already. If this area conflicts with your
program then the SOFTWARE STACK must not be used. It
will not corrupt anything in this address range if it is not used.
The utilities that you can safely use in this case are:

The code relocation routine, the block relocation routine, the
byte insert or delete routines, search/replace routine and ad-
dress jump.

All the other routines may effect your program.
Below is a discussion of each individual utility routine:

CODE RELOCATION ROUTINE:
ADDRESS, GO, 1
This very clever routine shifts a program from one spot in

memory to another and changes all the absolute jumps and
calls. Memory pointers are also altered if the memory pointers
are loaded into any of the following registers: BC, DE or HL
(sorry, not IX or IY) and point to a location between the start
and end address of the program being relocated.

I.E. 01 xx xx ,11 xx xx or 21 xx xx where xx xx is an address
between the start and end of the program being relocated.

In addition, to these direct loadings, any indirect loading of
HL is also altered if it is in three byte format.

IE. 2A xx xx or 22 xx xx is altered if xx XX is an address that
is between the start and end address, while ED 63 xx xx or ED
6B xx xx is not altered even though they are the same instruc-
tions as above.

The program MUST BE IN ITS CORRECT EXECUTING
LOCATION BEFORE THIS ROUTINE IS USED.

Any reference to a location outside the start and end range, is
not altered.

The variables for this routine are:
THE START and THE END of the program to shift, and the

DESTINATION or the new start address.
These variables are loaded by using the PERIMETER

HANDLER and the RELOCATION ROUTINE is executed
from the PERIMETER HANDLER by hitting "GO".

BYTE DELETE and INSERT
ROUTINES:

DELETE: - ADDRESS, GO, 2
INSERT: - ADDRESS, GO, 3.
The byte delete and insert routines removes or adds a byte

from memory, and then alters ALL effected jumps, calls and
address pointers as described above.

A two byte displacement can be added so that a routine that
is not currently in its correct executing memory can he
modified. This feature is useful if you wish to modify JMON
(by relocating it to 1000H performing the changes with an
offset as described below, and then replacing it a 0000 again).

The variables for this routine are:
The START and END ADDRESSES of the program to have

a byte added or deleted, the OFFSET (if any, this valve is zeroed
by default), and the TARGET ADDRESS POINTER.

The target address pointer is automatically entered into the
PERIMETER HANDLER as a copy of the current display
address and therefore does not need to be entered if the target
address is the same as the address on the LED display.

The offset is the difference between the actual location the
program is in and the real executing location.
Eg. Program runs at 0000 but is at 1000, offset = 1000-0000.
Offset = 1000.
The offset could also be a negative number (greater than
7FFF).
Eg. The program runs at 3800 but is currently at 1000. The
offset is then:
1000 - 3800 = F800

BLOCK SHIFT ROUTINE:
ADDRESS, GO, 4
This routine is the simplest of all the utilities. The action of

this routine is to move a block from one address to another.
None of the bytes in the routine are altered in any way. To use
this routine call it up by using ADDR, GO, 4. Now enter the
start address, the end address and the destination address (it may
be between the start and end addresses). When you have done
this then hit "GO" and your block will be shifted for you.

REL JUMP ROUTINE:
ADDRESS, GO, 5
The REL JUMP ROUTINE saves the current address on the

software stack and then displays the address that the current
data byte lands on if it was a two's compliment displacement
for a jump relative.

After using this routine, you can return back by using the
SOFTWARE POP routine described below.

You will find this routine a god-sent!

ADDRESS JUMP ROUTINE:
ADDRESS, GO, 9
This routine first saves the current address on the software

stack and then displays the address pointed to by the data byte
in the display (low order byte) and the next byte (high order
byte). This is the normal Z80 format for addresses.

Use the SOFTWARE POP (ADDRESS, GO, 6) to return.

STACK CURRENT ADDRESS:
ADDRESS, GO, 7
This routine saves the current address on the software stack

and returns to JMON as it left it. This routine is used in
conjunction with the following two RELATIVE DISPLACE-
MENT CALCULATOR routines or can be used as a "note pad"
to remember an important location.

RETRO REL:
ADDRESS, GO, 8

RETRO REL is a routine that will calculate and enter the
TWO'S COMPLIMENT displacement between the current

display address and the address on the top of the software stack
AT THE ADDRESS ON THE SOFTWARE STACK. The top
address on the software stack is then removed. The address on
the software stack is incremented before the calculation to
allow for the fact that the Z80's program counter is incremented
before the displacement is added to it.

This is how to use it:
When entering a program and you come to enter a FOR-

WARD RELATIVE JUMP DISPLACEMENT, stack the ad-
dress of the displacement (use ADDRESS, GO, 7). Continue to
enter the code until you come to the LANDING ADDRESS for
the REL JUMP. Now invoke the RETRO REL ROUTINE by
pushing ADDRESS, GO, 8. The correct displacement has been
retrospectively entered at the address you put on the stack and
the address is removed from the stack. Eg.
START: 18 XX JR LAND

XX is a displacement you don't know. With JMON pointing
to the address of XX, Use ADDRESS, GO, 7. This will put its
address on the SOFTWARE STACK. Now, enter the
remainder of the code:

00 	NOP
00 	NOP
00 	NOP

LAND: 3E 44 	LD A,44
When you come to LAND, Use ADDRESS, GO, 8.
The right displacement has been placed in the JP REL in-
struction. Try it!

RETRO LAND:
ADDRESS, GO, B

This is the compliment to the RETRO REL routine. The
action of this routine is to calculate the displacement between
the current display address and the address on the software
stack as described above. The difference here is that the actual
landing address is the address on the software stack and the
address of where you want the displacement is the current
display address. This arrangement is for when you come to the
LANDING ADDRESS BEFORE the BACKWARD REL
JUMP.

To use it, you stack the landing address as you come to it and
enter the rest of the code until you come to the actual address
of the DISPLACEMENT. When at this address use ADDRESS,
GO, B. The required displacement is entered before your eyes
and the landing address is removed from the stack.

SOFTWARE POP:
ADDRESS, GO, 6

This routine returns the address on top of the software stack
to the display address buffer of JMON and then removes the
return address from the stack. When JMON is re-entered it
displays the software popped address. This routine is useful for
returning from a software REL JUMP.

SEARCH OR SEARCH/REPLACE:
ADDRESS, GO, A
This routine will search for TWO bytes and optionally replace

them. If the optional replace function is not required, then
JMON is re-entered and is pointing to the first found occurrence
of the two bytes. lithe optional replace is enabled, the two bytes
are replaced with the new two provided by you in the
PERIMETER HANDLER.

This routine uses the PERIMETER HANDLER to enter
FOUR variables:

The START and END of the search field, the TWO BYTE
VALUE to look for and the OPTIONAL REPLACEMENT
BYTES.

The address to look for and the optional replacement is
entered so that the high order byte shifts to the left side of the

address display.
I.E. Search for 12 34 and replace with 56 78. This will be

entered as 34 12 under the tB (target Bytes) heading and 78 56
under the rP (RePlace) heading.

If you do not require an optional replace value, then enter
1-Hrr under the rP heading (you must enter it yourself as it is
NOT set to HIT by default).

This utility can be use to change port numbers
Eg. to change 	OUT (07),A D3 07
to: 	 OUT (06),A D3 06
Enter 07D3 in the tB window and 06D3 in the rP window
and run the utility.

ADDRESS CALL
ADDRESS, GO, C
This utility is similar to the address jump. The difference is

that address call puts the current address on the SOFTWARE
STACK so you can return to where you called from. Its opera-
tion is just like that of a normal call instruction except that its
is been simulated by software.

The ADDRESS CALL is designed to allow you to follow the
path of a call instruction to its sub-routine when tracing through
a program. The Keystrokes are easy to remember for AD-
DRESS CALL, just think of C for CALL.

STRATEGIES FOR
USING THE UTILITIES
The operating condition of the utilities should be considered

when writing programs. One particular thing to watch is the use
of the HL, DE and BC register pairs. The contents of these
registers are subject to being altered by the insert/delete and the
code relocation routine.

If one of these registers is being loaded with a value that is
not an addresi pointer within the program, it must be taken into
consideration that this value will be altered by the above
mentioned, routines if it fall within the start and end address
range of the program.

I fell into this trap when writing JMON. The loop counters in
the tape software were altered and as a result the first 16 JMONs
had a faulty high speed tape save routine.

To avoid such problem a good strategy is to load the register
pair one byte ata time.

Eg. Instead of this:
21 00 02 	 LD HL,0200
Use:
26 02 	 LD H,02
2E 00 	 LD L,00

For the sake of one extra byte you leave the program open for
easy editing.

Some times the reverse happens. An address in HL is in fact
an address pointer that indexes data within the program block.
This value in Hi. may have been generated by two separate 8
bit values being brought together. When this happens the
relocation routine has no way of knowing how to alter the 8 bit
values and as a result the address in HL is left unaltered and
therefore incorrect.

The way around this problem is to avoid generating address
pointers from 8 bit values. If this is not possible then the next
best thing to do is to carefully document the offending area of
code so that it can be manually altered later.

Another thing to watch is that indirect loading of BC, DE and
HL (in the 4 byte form of the instruction) from memory are not
altered. These instructions should be carefully documented and
changed manually later.

The search and replace utility routine will be handy for this
operation.

JMON PROGRAMMERS UTILITIES DISASSEMBLY
3800 C3 00 3B 	 JP 3600 	 jump to the reset routine

Below is the jump table for the ADDR, GO, (Data key) routine selection of JMON

3820 FF FF 	 unused
3822 F7 39 	 relocation routine
3824 50 38 	 byte delete
3826 55 38 	 byte insert
3828 D4 3A 	 block shift
382A 07 3B 	 rel jump
382C OD 3B 	 soft pop
382E 57 3B 	 soft stack
3830 5C 3B 	 retro rel
3832 76 3B 	 addr jump
3834 82 3B 	 search/replace
3836 D3 3B 	 retro land
3838 73 38 	 addr call

Start of byte insert/delete set-up routine

3850
3853
3855
3858
385B
385E

21 61 38 LD HL,3861
18 03 JR 3858
21 66 38 LD HL,3866
22 88 08 LD (0888),HL
CD BC 3A CALL 3ABC
C3 44 00 JP 0044

HL = delete routine address

HL = insert routine address
store PH jump on "GO" addr
call PH command string set-up
jump to JMON perimeter handler

Delete routine start: The delete routine is called and then a common jump/call address corrector is jump to

3861 CD 6B 38
3864 18 3C

Insert routine start:

3866 CD 87 38
3869 18 37

CALL 386B
JR 38A2

CALL 3887
JR 38A2

call delete
jump to corrector

call insert
jump to common corrector

Delete block shift routine. This routine calculates the count and then moves the block above the pointer down one location
using the LDDR instruction.

386B 2A 9A 08 	 LD HL,(089A) 	 LD HL with end address
386E ED 5B 9E 08 	 LD DE,(089E) 	 DE with current pointer
3872 B7 	 OR A 	 clear carry
3873 ED 52 	 SBC HL,DE 	 is end less that pointer?
3875 DA 4A 00 	 JP C 004A 	 jump to JMON err-in if so
3878 E5 	 PUSH HL else result = count+1
3879 Cl 	 POP BC ' 	 put count +1 into BC
387A OB 	 DEC BC 	 correct count
387B D5 	 PUSH DE 	 save current pointer
387C El 	 POP HL 	 put it in HL
387D 23 	 INC HL 	 increase by source pointer one
387E ED BO 	 LDIR 	 perform block increment shift
3880 ED 53 9A 08 	 LD (089A),DE 	 save new end addr
3884 3E FF 	 LD A,FF 	 set ACCUM to FF to flag delete
3886 C9 	 RET 	 function and return

Insert block shift routine. This routine calculates the count and then moves the block using the LDIR instruction.

3887 2A 9A 08 	 LD HL,(089A) 	 put end in HL
388A ED 4B 9E 08 	 LD BC,(089E) 	 pointer in BC
388E E5 	 PUSH HL 	 save end
388F E5 	 PUSH HL 	 twice on stack
3890 D1 	 POP DE 	 put end in DE
3891 B7 	 OR A 	 clear carry
3892 ED 42 	 SBC HL,BC 	 sub end, pointer to get count-1
3894 E5 	 PUSH HL 	 save count-1
3895 Cl 	 POP BC 	 put count-1 in BC
3896 El 	 POP HL 	 recover end in HL
3897 13 	 INC DE 	 point DE to pointer+l
3898 03 	 INC BC 	 increase BC to real count
3899 ED 53 9A 08 	 LD (089A),DE 	 save new end
389D ED B8 	 LDDR 	 do block decrement shift
389F AF 	 XOR A 	 clear ACCUM to flag insert function
38A0 12 	 LD (DE),A 	 and clear new byte in memory

38A1 C9 	 RET

Below is the common corrector. The corrector uses the byte in the
The value in the ACCUM was placed there by the insert or delete

38A2 32 A4 08
	

LD (08A4),A
38A5 2A 98 08
	

LD HL,(0898)
38A8 22 AO 08
	

LD (08A0),HL
38AB 2A 9A 08
	

LD HL,(089A)
38AE 22 A2 08
	

LD (08A2),HL
38B1 CD B5 38
	

CALL 38B5
38B4 C9
	

RET

done

ACCUM to know if the operation was a insert or delete.
routine. This byte is stored at 08A4 for future reference

put insert/delete flag in buffer
put start in "working" start
buffer and
end in "corrector end"
buffer
call main corrector routine
and return

Main corrector routine

38B5 2A AO 08
38B8 7E
38B9 CD 6B 39
38BC F5
38BD 79
38BE FE 03
38C0 28 06
38C2 Fl
38C3 79

LD HL,(08A0)
LD A,(HL)
CALL 396B
PUSH AF
LD A,C
CP 03
JR Z 38C8
POP AF
LD A,C

get first addr from working start
get op-code
call length to find how many
bytes in instr: save flags
put byte count in ACCUM
is it a 3 byte instruction?
jump if it is to 3 byte handler
else recover flags
get length from C again

The first jump below is executed if the instruction is one that may modify execution sequence E.g a RET, JR, JP(HL) etc:
the carry was set in the length routine

38C4 38 59 	 JR C 391F 	 jump to exception handler
38C6 18 51 	 JR 3919 	 jump from here if just normal instr
3 byte instruction handler. First test that the instruction is not an IX or IY reference, if not then must be absolute address refer-
ence so correct address.
38C8 Fl
38C9 00
38CA 00
38CB 00
38CC 00
38CD 00
38CE FE DD
38D0 28 47
38D2 FE FD
38D4 28 43
38D6 23
38D7 5E
38D8 23
38D9 56
38DA ED 4B 9E 08
38DE 1B
38DF 2A 9C 08
38E2 19

38E3 EB
38E4 CD 60 39
38E7 2A AO 08
38EA 38 1D
38EC E5
38ED ED 4B A2 08
38F1 CD 60 39
38F4 El
38F5 30 12
38F7 23
38F8 5E
38F9 23
38FA 56
38FB 3A A4 08
38FE B7
38FF 20 02
3901 13
3902 13
3903 1B
3904 72
3905 2B
3906 73

POP AF
NOP
NOP
NOP
NOP
NOP
CP DD
JR.Z 3919
CP FD
JR Z 3919
INC HL
LD E,(HL)
INC HL
LD D,(HL).
LD BC,(089E)
DEC DE
LD HL,(089C)
ADD HL,DE

EX DE,HL
CALL 3960
LD HL,(08A0)
JR C 3909
PUSH HL
LD BC,(08A2)
CALL 3960
POP HL
JR NC 3909
INC HL
LD E,(HL)
INC HL
LD D,(HL)
LD A,(08A4)
OR A
JR NZ 3903
INC DE
INC DE
DEC DE
LD (HL),D
DEC HL
LD (HL),E

clean up stack
fixed
some errors
here

test for IX instruction
jump if it is IX instruction
else test for IV instruction
jump if so
else must be a 3 byte jump or
memory pointer: put target addr
into DE

put pointer in BC
temporary sub 1 from target address
get user provided offset
add target addr and offset
to form target addr to match
new area: put new target-1 in DE
and old target addr-1 in HL
call to see if landing target lower than
pointer: put instruction addr in HL: jump
if landing below pointer (no change required)
save instruction pointer
put end in BC
call to see if targ lower than end
put current instr pointer in HL
jump if targ above end (no alt)
else get actual targ addr
in DE
as we are going to correct the address

test for insert or delete
if A=0 then insert
jump if delete
else increment target addr
twice
decrement target addr
store
new
targ addr

3907 18 01
3909 23
390A 23
390B 23
390C 22 AO 08
390F ED 5B A2 08
3913 B7
3914 ED 52
3916 38 9D
3918 C9

Normal instruction processed here

3919 23
391A OD
391B 20 FC
391D 18 ED
391F FE 02
3921 20 F6
3923 23
3924 5E
3925 23

JR 390A
INC HL
INC HL
INC HL
LD (08A0),HL
LD DE,(08A2)
OR A
SBC HL,DE
JR C 38B5
RET

INC HL
DEC C
JR NZ 3919
JR 390C
CP 02
JR NZ 3919
INC HL
LD E,(HL)
INC HL

jump to up-date the pointer to next instruction
various sections jump around here to set
HL to point to the next instruction
depending on length of current inst
store new instruction pointer
test if instruction pointer
is equal to end pointer

jump for more if not
else all done, go home

HL is incremented
once for each byte in the
instruction
jump to check for end
test here for a jump relative
jump if not 2 bytes, else must be rel jump
else get displacement
in e and inc HL to simulate PC
being incremented before jump

Below the display segment is sign extended, that is turned into a 16 bit two's complement value in DE

3926 AF
3927 CB 7B
3929 28 01
392B 2F
392C 57
392D 19
392E ED 5B AO 08
3932 ED 4B 9E 08
3936 2B
3937 2B
3938 CD 55 39

XOR A
BIT 7,E
JR Z 392C
CPL
LD D,A
ADD HL,DE
LD DE,(08A0)
LD BC,(089E)
DEC HL
DEC HL
CALL 3955

clear accum
is displacement
negative: jump if not
else set all a bits high
put in D
add displacement and pointer+2
HL now = landing addr: put pointer into DE
DE and target addr in BC
set HL to
landing-2
call maths

Carry is clear if the both the landing addr and addr of jump is greater than targ addr or if both the land addr and jump
addr is below the targ addr. in other words The jump does not cross the target addr and the displacement doesn't need
to be altered.

393E El

3943 B7
3944 20 OB 	 jump if delete

3949 20 03 	 jump if so

394F 18 BA 	 jump to store

3952 2F 	 in ACCUM: toggle bits to use above

General purpose maths section

3955 B7
3956 ED 42
3958 30 06
395A C5
395B El
395C B7
395D ED 52
395F C9
3960 D5
3961 El
3962 B7
3963 ED 42
3965 C9

393B 30 29 	 jump if no aft required
393D 05 	 put pointer in HL

393F 23 	 point to displacement
3940 3A A4 08 	 get insert/delete flag

3946 7E 	 get displacement in a
3947 CB 7F 	 test for backward jump

394B 34 	 else increment displacement
394C 18 BD 	 jump to store and continue
394E 35 	 decrement displacement

3951 7E 	 delete corrector: get displacement

3953 18 F2 	 corrector and jump to correct

JR NC 3966
PUSH DE
POP HL
INC HL
LD A,(08A4)
OR A
JR NZ 3951
LD A,(HL)
BIT 7,A
JR NZ 394E
INC (HL)
JR 390B
DEC (HL)
JR 3908
LD A,(HL)
CPL
JR 3947

OR A
SBC HL,BC
JR NC 3960
PUSH BC
POP HL
OR A
SBC HL,DE
RET
PUSH DE
POP HL
OR A
SBC HL,BC
RET

clear carry
subtract BC from HL
jump if HL = or BC
put BC
into HL
clear carry
subtract DE from HL
done
put DE
into HL
clear carry
sub BC from HL
done

Routine jumps here if displacement not required to be altered

3966 2A AO 08 	 LD HL,(08A0) 	 get pointer
3969 18 9F 	 JR 390A 	 jump to up-date pointer and cont

Length routine

396B OE 04 	 LD C,04 	 length routine
396D 7E 	 LD A,(HL) 	 this routine works out the length
396E 23 	 INC HL 	 of each instruction and returns
396F 46 	 LD B,(HL) 	 with it in the C register.
3970 2B 	 DEC HL 	 as well as the length, this
3971 E6 DF 	 AND DF 	 routine checks to see if the
3973 FE DD 	 CP DD 	 instruction may break the normal
3975 20 11 	 JR NZ 3988 	 sequence of execution Eg a ret
3977 78 	 LD A,B 	 jump or call and sets the carry
3978 30 06 	 JR NC 3980 	 if so
397A C8 	 RET Z 	 because its operation is
397B FE 36 	 CP 36 	 straight forward and obvious,
397D C8 	 RET Z 	 comments for each instruction are
397E FE 21 	 CP 21 	 unnecessary
3980 C8 	 RET Z
3981 E6 F7 	 AND F7
3983 FE 22 	 CP 22
3985 C8 	 RET Z
3986 18 OF 	 JR 3997
3988 7E 	 LD A,(HL)
3989 FE ED 	 CP ED
398B 20 1F 	 JR NZ 39AC
398D 78 	 LD A,B
398E E6 C7 	 AND C7
3990 FE 43 	 CP 43
3992 C8 	 RET Z
3993 B7 	 OR A
3994 OD 	 DEC C
3995 OD 	 DEC C
3996 C9 	 RET
3997 OD 	 DECC
3998 78 	 LD'A,B
3999 E6 B8 	 AND B8
399B FE 30 	 CP 30
399D C8 	 RET Z
399E 78 	 LD A,B
399F E6 06 	 AND 06
39A1 FE 06 	 CP 06
39A3 C8 	 RET Z
39A4 OD 	 DEC C
39A5 78 	 LD A,B
39A6 FE E9 	 CP E9
39A8 37 	 SCF
39A9 C8 	 RET Z
39AA 3F 	 CCF
39AB C9 	 RET
39AC OD 	 DEC C
39AD 7E 	 LD A,(HL)
39AE E6 CF 	 AND CF
39130 FE 01 	 CP 01
39132 C8 	 RET Z
39B3 7E 	 LD A,(HL)
3984 E6 E7 	 AND E7
3986 FE 22 	 CP 22
3988 C8 	 RET Z
39E19 7E 	 LD A,(HL)
39BA FE C3 	 CP C3
39BC 37 	 SCF
39BD C8 	 RET Z
39BE FE CD 	 CP CD
39C0 37 	 SCF
39C1 C8 	 RET Z
39C2 E6 C7 	 AND C7
39C4 FE C2 	 CP C2

39C6 37 	 SCF
39C7 C8 	 RET Z
39C8 FE C4 	 CP C4
39CA 37 	 SCF
39CB C8 	 RET Z
39CC OD 	 DEC C
39CD FE 06 	 CP 06
39CF C8 	 RET Z
39D0 FE C6 	 CP C6
39D2 C8 	 RET Z
39D3 OD 	 DEC C
39D4 37 	 SCF
39D5 C8 	 RET Z
39D6 7E 	 LD A,(HL)
39D7 E6 F7 	 AND F7
39D9 C8 	 RET Z
39DA OC 	 INC C
39DB 7E 	 LD A,(HL)
39DC E6 E7 	 AND E7
39DE FE C3 	 CP C3
39E0 C8 	 RET Z
39E1 E6 C7 	 AND C7
39E3 37 	 SCF
39E4 C8 	 RET Z
39E5 OD 	 DEC C
39E6 7E 	 LD A,(HL)
39E7 FE E9 	 CP E9
39E9 37 	 SCF
39EA C8 	 RET Z
39EB FE C9 	 CP C9
39ED 37 	 SCF
39EE C8 	 RET Z
39EF E6 C1 	 AND Cl
39F1 FE CO 	 CP CO
39F3 37 	 SCF
39F4 C8 	 RET Z
39F5 3F 	 CC,F
39F6 C9 	 RET

Set-up for the code relocation routine

39F7 21 06 3A
39FA 22 88 08
39FD 21 EE 3A
3A00 CD BF 3A
3A03 C3 44 00

LD HL,3A06
LD (0888),HL
LD HL,3AEE
CALL 3ABF
JP 0044

load HL with routine start addr
save in perimeter go addr buffer
point HL to command string
shift command sting to ram
jump to perimeter handler

Code relocate routine re-starts here after perimeter handler.

3A06 CD OC 3A 	 CALL 3AOC 	 call block shift
3A09 C3 45 3A 	 JP 3A45 	 and jump to corrector

Block shift starts here

3AOC 2A 98 08 	 LD HL,(0898) 	 put start in HL
3AOF ED 4B 9C 08 	 LD BC,(089C) 	 destination in BC
3A13 ED 5B 9A 08 	 LD DE,(089A) 	 and end in DE
3A17 E5 	 PUSH HL 	 save start
3A18 B7 	 ORA 	 clear carry
3A19 ED 42 	 SBC HL,BC 	 get offset between start and dest
3A1B 30 06 	 JR NC 3A23 	 jump if dest below start
3A1D C5 	 PUSH BC 	 else put dest in HL
3A1E E1 	 POP HL
3A1F 13 	 INC DE 	 inc end
3A20 B7 	 OR A 	 clear carry
3A21 ED 52 	 SBC HL,DE 	 dest - end
3A23 E1 	 POP HL 	 put start into HL again
3A24 F5 	 PUSH AF 	 save flags
3A25 E5 	 PUSH HL 	 save start
3A26 EB 	 EX DE,HL 	 DE.startlind
3A27 B7 	 OR A 	 clear carry
3A28 ED 52 	 SBC HL,DE 	 end-start
3A2A EB 	 EX DE,HL 	 DE=no of bytes

3A2B El
	

POP HL
	

recover start
3A2C 30 04
	

JR NC 3A32
	

jump if end greater than start
3A2E Fl
	

POP AF
	

else clean up stack
3A2F C3 4A 00
	

JP 004A
	

jump to display err-in
3A32 Fl
	

POP A5
	

recover flags
3A33 D5
	

PUSH DE
	

swap
3A34 C5
	

PUSH BC
	

DE
3A35 D1
	

POP DE
	

and
3A36 Cl
	

POP BC
	

BC
3A37 30 08
	

JR NC 3A41
	

jump if dest is between start and
3A39 EB
	

EX DE,HL
	

end: else swap HL and DE
3A3A 09
	

ADD HL,BC
	

calculate end of new block
3A3B EB
	

EX DE,HL
	

put start in HL dest in DE
3A3C 09
	

ADD HL,BC
	

calculate end of original block
3A3D 03
	

INC BC
	

increase count to true count
3A3E ED B8
	

LDDR
	

block shift from end first
3A40 C9
	

RET
	

done
3A41 03
	

INC BC
	

increase BC to real count
3A42 ED BO
	

LDIR
	

block shift from the start first
3A44 C9
	

RET
	

done

The jump/call corrector routine for the code relocater starts here

3A45 2A 9C 08
3A48 ED 5B 98 08
3A4C B7
3A4D ED 52
3A4F 22 A4 08
3A52 2A 9A 08
3A55 ED 5B 98 08
3A59 B7
3A5A ED 52
3A5C 23
3A5D ED 5B 9C 08
3A61 19
3A62 22 A2 08
3A65 2A 9E 08
3A68 22 AO 08
3A6B 00
3A6C 00
3A6D 00
3A6E 00
3A6F 2A AO 08
3A72 7E
3A73 CD 6B 39
3A76 79
3A77 FE 03
3A79 20 3B
3A7B FE DD
3A7D 28 33
3A7F FE FD
3A81 28 2F
3A83 E5
3A84 D1
3A85 23
3A86 4E
3A87 23
3A88 46
3A89 2A 98 08
3A8C 2B
3A8D B7
3A8E ED 42
3A90 30 11
3A92 2A 9A 08
3A95 B7
3A96 ED 42
3A98 38 09
3A9A 2A A4 08
3A9D 09
3A9E EB
3A9F 23

LD HL,(089C)
LD DE,(0898)
OR A
SBC HL,DE
LD (08A4),HL
LD HL,(089A)
LD DE,(0898)
OR A
SBC HL,DE
INC HL
LD DE,(089C)
ADD HL,DE
LD (08A2),HL
LD HL,(089E)
LD (08A0),HL
NOP
NOP
NOP
NOP
LD HL,(08A0)
LD A,(HL)
CALL 396B
LD A,C
CP 03
JR NZ 3AB6
CP DD
JR Z 3AB2
CP FD
JR Z 3AB2
PUSH HL
POP DE
INC HL
LD C,(HL)
INC HL.
LD B,(HL)
LD HL,(0898)
DEC HL
OR A
SBC HL,BC
JR NC 3AA3
LD HL,(089A)
OR A
SBC HL,BC
JR C 3AA3
LD HL,(08A4)
ADD HL,BC
EX DE,HL
INC HL

put dest in HL
put start in DE
clear carry
get offset between dest and start
store in correction factor buffer
get end in HL
put start in DE
clear carry
sub start from end
correct HL to real count
put dest in DE
find end of dest block
save it
get new block start (the destination)
put in working buffer
idea
scraped
to lazy to remove nopsl

get pointer
get instruction
find length
put length in a
is it a 3 byte instruction?
jump if not
is it a
IX or
IY
instruction: jump if so
else must be 3 byte pointer
put pointer in DE
put addr
in
BC

start in HL

clear carry
sub target from start-1
jump if target start
put end in HL
clear carry
sub target from end
jump if target higher than end
get correction factor
add to jump/call/pointer address
put new addr in DE
and store

LD (HL),E
INC HL
LD (HL),D
LD HL,(08A0)
INC HI
INC HL''
INC HL
LD (08A0),HL
LD DE,(08A2)
OR A
SBC HL,DE
JR C 3A6F
RET
INC HL
DEC C
JR NZ 3AB6
JR 3AA9

for insert delete routines (See the Perimeter set-up
values)

21 DC 3A
11 80 08
01 08 00
ED BO
21 00 00
22 9C 08
2A 2E 08
22 9E 08
C9

perimeter set-up for block shift

3AA0 73
3AA1 23
3AA2 72
3AA3 2A AO 08
3AA6 23
3AA7 23
3AA8 23
3AA9 22 AO 08
3AAC ED 5B A2 08
3AE30 B7
3AB1 ED 52
3AB3 38 BA
3AB5 C9
3AB6 23
3AB7 OD
3AB8 20 FC
3ABA 18 ED

3ABC
3ABF
3AC2
3AC5
3AC7
3ACA
3ACD
3ADO
3AD3

3AD4 21 OC 3A
3AD7 C3 FA 39

3ADC FF FF
3ADE E4 3A
3AEO 99 08
3AE2 00
3AE3 03

it
back
to jump/call etc instruction
get pointer
increase to next instruction

store it
get end

test for finish
jump if not finished
done
routine comes here if not 3 byte
instruction: HL is incremented
to point to the next instruction
jump to end test

TECPACK for an explaination of the PERIMETER HANDLER set-up

point HL to start of command
string and DE to ram area
set for 8 bytes (no jump vector)
shift variables
clear optional
offset buffer
get current pointer
put it in working buffer
done

unused
data displays address
ram buffer+1
number of first window
number of allowable windows-1

LD HL,3ADC
LD DE,0880
LD BC,0008
LDIR
LD HL,0000
LD (089C),HL
LD HL,(082E)
LD (089E),HL
RET

LD HL,3AOC
JP 39FA

Display codes for block shift

	

3AE4 04 A7 	 -S

	

3AE6 04 C7 	 -E

	

- 3AE8 04 EB 	 -0

	

3AEA 04 4F 	 -P

Command string for code relocation routine.

3AEE FF FF F6 3A 99 08 00 02

Display codes for code relocation routine.

	

3AF6 04 A7 	 -s

	

3AF8 04 C7
	 -e

	

3AFA 04 EC
	 -d

3B00 21 FF OF
	

LD HL,OFFF
	

utilities reset routine
3B03 22 FC 08
	

LD (08FC),HL
	

set soft stack at OFFF
31306 C9
	

RET
	

done

Rel jump routine

31307 CD 10 38
	

CALL 3810
	

call stack routine
3BOA C3 29 38
	

JP 3B29
	

jump to rel calculator

Soft pop start

3BOD C3 3E 3B
	

JP 3B3E
	

jump to soft pop routine

Stack routine

3B10 ED 5B DO OF
	

LD DE,(OFDO)
	

get soft stack pointer
3814 78
	

LD A,E
3815 FE DF
	

CP DF
	

test for end
3B17 CA 3C 08
	

JP Z 083C
	

jump to sound error bell
3B1A 21 2F 08
	

LD HL,082F
	

point to current display addr

361D 7E 	 LD A,(HL) 	 put it in
3B1 E 12 	 LD (DE),A 	 soft stack
3B1F 1B 	 DEC DE
3B20 2B 	 DEC HL ,
3B21 7E 	 LD A,(HL)
3B22 12 	 LD (DE),A
3B23 1B 	 DEC DE
3624 ED 53 FC 08 	 LD (08FC),DE 	 store new soft stack value
31328 C9 	 RET 	 done

Rel jump calculator

31329 2A 2E 08 	 LD HL,(082E) 	 get current display pointer
3B2C 5E 	 LD E,(HL) 	 sign extend
3B2D AF 	 XOR A 	 displacement
3B2E CB 7B 	 BIT 7,E 	 in
3630 28 01 	 JR Z 31333 	 DE
3832 2F 	 CPL
31333 57 	 LD D,A
31334 23 	 INC HL
31335 19 	 ADD HL,DE 	 add displacement and pointer
3B36 22 2E 08 	 LD (082E),HL 	 store new pointer
3B39 AF 	 XOR A 	 set JMON to data mode
3B3A 32 2B 08 	 LD (0826),A
3B3D C9 	 RET 	 done

Unstack stack routine

3B3E ED 5B FC 08 	 LD DE,(08FC) 	 get soft stack pointer
3B42 7B 	 LD A,E 	 test for
31343 FE FF 	 CP FF 	 last location
3845 28 F2 	 JR Z 3B39 	 go if it is
3847 21 2E 08 	 LD HL,082E 	 else
3B4A 13 	 INC DE 	 get
313413 1A 	 LD A,(DE) 	 low byte
3B4C 77 	 LD (HL),A 	 put in display buffer
3B4D 13 	 INC DE 	 do
364E 23 	 INC HL 	 for
3B4F 1A 	 LD A,(DE) 	 high
3650 77 	 LD (HL),A 	 byte
3B51 ED 53 FC 08 	 ,LD (08FC),DE 	 save new soft stack pointer
3B55 18 E2 	 JR 3B39 	 jump to set data mode

Addr, go, 7 routine (stack current location)

3E357 CD 10 3B
	

CALL 3B10
	

call soft stacker
365A 18 DD
	

JR 31339
	

jump to set data mode

Retro rel

3B5C 2A 2E 08 	 LD HL,(082E) 	 save the current display
3B5F E5 	 PUSH HL 	 pointer on the stack
3B60 CD 3E 3B 	 CALL 3B3E 	 call soft pop
31363 ED 58 2E 08 	 LD DE,(082E) 	 put poped addr in DE
3B67 El 	 POP HL 	 recover current disp pointer
31368 22 2E 08 	 LD (082E),HL 	 restore in buffer
3B6B 13 	 INC DE 	 inc DE as PC is incremented
3B6C B7 	 OR A 	 before rel jump: clear a
3B6D ED 52 	 SBC HL,DE 	 get displacement
3B6F 7D 	 LD A,L 	 from L
3B70 1B 	 DEC DE 	 point DE to displacement addr
3B71 12 	 LD (DE),A 	 store displacement
3B72 C9 	 RET 	 done

Address jump

3B73 CD 10 3B 	 CALL 3810 	 stack current disp addr
3B76 2A 2E 08 	 LD HL,(082E) 	 get current disp addr
3B79 5E 	 LD E,(HL) 	 put 16 bit contents
3B7A 23 	 INC HL 	 into DE
3B7B 56 	 LD D,(HL)
3B7C ED 53 2E 08 	 LD (082E),DE 	 store DE as new current disp addr
31380 18 B7 	 JR 31339 	 jump to set data mode

Search/replace perimeter handler set-up

3B82 21 Cl 3B 	 LD HL,3BC1 	 point HL to command string

3685 11 80 08 	 LD DE,0880 	 DE to ram area
3688 01 OA 00 	 LD BC,000A 	 BC for 10 bytes
3B8B ED BO 	 LDIR 	 move variables
3B8D C3 44 00 	 JP 0044 	 jump to PH

Search/replace routine

3B90 2A 98 08 	 LD HL,(0898) 	 put start in HL
3B93 ED 4B 9A 08 	 LD BC,(089A) 	 end in BC
3B97 ED 5B 9C 08 	 LD DE,(089C) 	 target addr in DE
3B9B 7B 	 LD A,E 	 test low order byte
3B9C BE 	 CP (HL)
3B9D 23 	 INC HL 	 point to high order byte
369E 20 13 	 JR NZ 3883 	 jump if low byte not the same
3BAO 7A 	 LD A,D 	 test
36A1 BE 	 CP.(HL) 	 high byte
3BA2 20 OF 	 JR NZ 313133 	 jump if not the same
36A4 ED 5B 9E 08 	 LD DE,(089E) 	 get optional replace addr
3BA8 13 	 INC DE 	 test
3BA9 7A 	 LD A,D 	 for
3BAA B3 	 ORE 	 FFFF
3BA8 1B 	 DEC DE
3BAC 28 OD 	 JR Z 3BBB 	 jump if FFFF as no replacement required
3BAE 2B 	 DEC HL 	 else
3BAF 73 	 LD (HL),E 	 replace low byte
3BBO 23 	 INC HL
3661 72 	 LD (HL),D 	 and then high byte
3BB2 23 	 INC HL 	 next byte
31363 E5 	 PUSH HL 	 save pointer
3BB4 B7 	 OR A 	' 	 test for end
3BB5 ED 42 	 SBC HL,BC
3BB7 El 	 POP HL
3BB8 38 DD 	 JR C 3B97 	 jump if more
3BBA C9 	 RET 	 done

The routine comes here when the addr found but no replacement is wanted

3BBB 2B 	 DEC HL
	

correct HL
3BBC 22 2E 08 	 LD (082E),HL

	
store in current display buff

3BBF 18 99 	 JR 3B5A
	

jump to set data mode

Search/replace command string

38C1 FF FF
3BC3 CB 36
	

data display address
3BC5 99 08
	

ram buffer+1
3BC7 00
	

number of first window
3BC8 03
	

number of allowable windows-1
3BC9 90 38
	

jump address

search/replace displays

3BCB 04 A7 	 -s
3BCD 04 C7 	 -e
3BCF C6 E6 	 tb
3BD1 44 4F 	 rp

Retro land

36D3 2A 2E 08 	 LD HL,(082E)
	

save current pointer
3BD6 E5 	 PUSH HL
3BD7 CD 3E 3B 	 CALL 363E

	
get addr on soft stack

3BDA ED 5B 2E 08 	 LD DE,(082E)
	

put it in DE
3BDE El 	 POP HL

	
restore current pointer

3BDF 22 2E 08 	 LD (082E),HL
3BE2 EB 	 EX DE,HL

	
put current pointer in DE and

38E3 13 	 INC DE
	

landing address in HL
3BE4 B7 	 OR A

	
inc DE as PC is Inc before jump

3BE5 ED 52 	 SBC HL,DE
	

find offset
3BE7 7D 	 LD A,L

	
put 8 bit offset Into ACCUM

3BE8 1B 	 DEC DE
	

point DE to instruction displacement
36E9 12 	 LD (DE),A

	
store displacement in jump REL

3BEA 18 D3 	 JR 3BBF
	

jump to set JMON data mode

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

